| LTR | | | | | | | | F | REVISI | ONS | | | | | | | | | | | |--|---|--|------------------|---|---|----------------------------------|---------------------|-----------|---------------------|-------------|--------------|-----------|-------------------|---------------------------|------------------|-------------------------|---------------------------|----------------|--------------------|------| | | | | | | | DESCF | RIPTIO | N | | | | | DA | TE (YI | R-MO-[| DA) | | APPR | ROVED | | | Α | Adde | ed case | outlir | ıe "F" ar | nd mad | e edito | rial cha | inges to | o reflec | t the in | clusion | . – lgt | 97-11-21 | | | R. M | NINNC | | | | | В | Add
Add | CAGE
case o | 65342
utline | for dev
X ro | vice typ | e 02 wi | th radia | ation ha | ardened | d requir | ements | 3. | 00-05-25 | | | R. MONNIN | | | | | | С | Make | e chanç | ge to I | ı, t _{PLZ} , t | PHZ, tp | ZH, tpz | _L tests | as spe | cified i | n table | - ro | | | 01-0 | 1-08 | | R. MONNIN | | | | | D | Add | device | type (| 3. Edit | orial ch | anges | through | nout I | gt | | | | | 01-0 | 6-13 | | R. MONNIN | | | | | E | Make | e chanç | ges to | 1.5 and | I I _{CC} ar | nd I _{CCZ} | in tabl | e I Ig | t | | | | | 01-1 | 0-04 | | R. MONNIN | | | | | F | Add | case o | utline | Z. Chan | iges to | 1.2.4, ′ | 1.3, and | d figure | 1 lgt | | | | | 02-0 |)4-21 | | | R. M | NINNC | | | G | Make | e chanç | ges to | 1.5 and | I to foot | note <u>2</u> / | in tabl | e I for c | device t | type 01 | lgt | | | 02-0 | 9-05 | | | R. MO | NINNC | | | Н | Add | append | dix A. | Update | drawin | g to re | flect cu | rrent re | quirem | nents | rrp | | | 04-0 |)4-19 | | | R. MO | NINNC | | | J | Make
unde | e chanç
er 1.3. | ge to t
- ro | he θ _{JA} I | imit for | case o | utlines | F and 2 | Z as sp | ecified | | | | 06-0 |)2-15 | | | R. M | NINNC | | | К | Add and (| a footn
03" to N | ote to
Veutro | he input
1.5 for on
irradia
ntirely. | device
ation fo | type 01
otnote | . Add
under 1 | the wor | rds, "Fo
ake cha | or devic | e type 3.2.3 | and | | 10-1 | 0-05 | | | C. SA | AFFLE | REV
SHEET
REV
SHEET | K 15 | K 16 | K 17 | K 18 | K 19 | K 20 | | | | | | | | | | | | | | | | SHEET
REV | + | | | + | 19 | | K | K | K | K | K | K | K | K | K | K | K | K | K | K | | SHEET
REV
SHEET | + | | | 18
RE\ | 19 | | K 1 | K 2 | K 3 | K 4 | K 5 | K 6 | K 7 | K 8 | K 9 | K 10 | K 11 | K 12 | K 13 | K 14 | | SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A | + | 16 | | 18 RE\ SHE PRE SA | 19
/ | 20
D BY
ROON | 1 | | | <u> </u> | 1 | 6 | 7
DLA I | 8
LAND | 9
AND
OHIO | 10
MAF
D 432 | 11
RITIM
218-39 | 12
E | | | | SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STA | 15 | 16 | | 18 RE\ SHE PRE SA CHE | 19 V EET PAREI NDRA CKED NDRA | 20
D BY
ROON
BY
ROON | 1
EY | | | <u> </u> | 1 | 6 | 7
DLA I | 8
LAND | 9
AND | 10
MAF
D 432 | 11
RITIM
218-39 | 12
E | | | | SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STAMMICRO DRA THIS DRAWIN FOR U | NDAF
OCIRCAWIN | RD
CUIT
G | 17 | 18 REV SHE PRE SA CHE SA | 19 V EET PAREI NDRA | 20
D BY
ROON
BY
ROON | 1
EY | | | 4
MIC | 5
CROC | CCCCCIRC | 7 DLA DLUM http | BUS; | 9 AND, OHIO | D MAF
D 432
cc.dl | RITIMI
218-3:
a.mil | 12
E
990 | 13 | 14 | | SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STAMMICRO DRA THIS DRAWIN FOR U | NDAF
OCIRCAWIN
NG IS A
SE BY
RTMEN
NCIES (| RD
CUIT
G
VAILA
ALL
ITS
OF THE | BLE | 18 REY SHE PRE SA CHE SA APP MIC | 19 V EET EPAREI NDRA ECKED NDRA | 20 D BY ROON BY ROON D BY A. FR' | 1 EY EY | 2 | | MIC DIF | 5
CROC | CIRCIENTI | 7 DLA DLUM http | BUS; | 9 AND, OHIO | D MAF
D 432
cc.dl | RITIMI
218-3:
a.mil | 12
E
990 | 13 | 14 | | SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STAI MICRO DRA THIS DRAWIN FOR U DEPA AND AGEN DEPARTMEN | NDAF
OCIRCAWIN
NG IS A
SE BY
RTMEN
NCIES (| RD
CUIT
G
VAILA
ALL
ITS
OF THE | BLE | 18 REY SHE PRE SA CHE SA APP MIG | 19 V EET PAREI NDRA CKED NDRA ROVEI CHAEL | D BY ROON BY A. FR' 96-0 | EY EY OVAL 005-03 | 2 | | MIC DIF SIL | CROC | CIRCIENTI | 7 DLA DLUM http | BLAND
BBUS,
D://www | 9 AND, OHIO | 0 MAF
D 432
cc.dl | RITIMI
218-3:
a.mil | 12
E 990 | 13
MOS
ITHIC | 14 | ## 1. SCOPE - 1.1 <u>Scope</u>. This drawing documents two product assurance class levels consisting of high reliability (device classes Q and M) and space application (device class V). A choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels is reflected in the PIN. - 1.2 PIN. The PIN is as shown in the following example: - 1.2.1 RHA designator. Device classes Q and V RHA marked devices meet the MIL-PRF-38535 specified RHA levels and are marked with the appropriate RHA designator. Device class M RHA marked devices meet the MIL-PRF-38535, appendix A specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device. - 1.2.2 Device type(s). The device type(s) identify the circuit function as follows: | Device type | Generic number | Circuit function | |-------------|----------------|---| | 01 | DS90C032 | Radiation hardened, LVDS quad CMOS differential line receiver | | 02 | UT54LVDS032 | Radiation hardened, LVDS quad CMOS differential line receiver | | 03 | UT54LVDSC032 | Radiation hardened, LVDS quad CMOS
differential line receiver with cold spare
on LVDS bus | 1.2.3 <u>Device class designator</u>. The device class designator is a single letter identifying the product assurance level as follows: | Device class | <u>Device requirements documentation</u> | |--------------|---| | M | Vendor self-certification to the requirements for MIL-STD-883 compliant, non-JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A | | Q or V | Certification and qualification to MIL-PRF-38535 | 1.2.4 Case outline(s). The case outline(s) are as designated in MIL-STD-1835 and as follows: | Outline letter | Descriptive designator | <u>Terminals</u> | Package style | |----------------|------------------------|------------------|--------------------------------| | F | GDFP2-F16 or CDFP3-F16 | 16 | Flat pack | | Χ | CDFP4-F16 | 16 | Flat pack | | Z | GDFP1-G16 | 16 | Flat pack with gull wing leads | | 2 | CQCC1-N20 | 20 | Square leadless chip carrier | 1.2.5 <u>Lead finish</u>. The lead finish is as specified in MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-95834 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
K | SHEET 2 | | 1.3 | Absolute maximum ratings. 1/ | | |-----|--|--| | | Supply voltage | -0.3 V to +6.0 V | | | Device type 01 | -0.3 V to 5.8 V | | | Device types 02 and 03 | -0.3 V to (V_{CC} + 0.3 V) | | | Enable input voltage (ENABLE, ENABLE) | $-0.3 \text{ V to (V}_{CC} + 0.3 \text{ V)}$ | | | Output voltage (R _{OUT}) | | | | Maximum power dissipation (PD): Cases F and Z Case X Case 2 Lead temperature (soldering, 10 seconds) | 1250 mW <u>2</u> /
1830 mW <u>2</u> / | | | Junction temperature (TJ) | | | | Thermal resistance, junction-to-case (θ _{JC}): Cases F and Z | 19°C/W | | | Case 2 | | | | Thermal resistance, junction-to-ambient (θ _{JA}): Cases F and Z Case X Case 2 | 145°C/W
120°C/W | | 1.4 | Recommended operating conditions. | | | | Supply voltage | GND to 2.4 V | | 1.5 | Radiation features. | | | | Maximum total dose available (dose rate = 50 – 300 rads(Si)/s): Device type 01 Device type 02 Device type 03 Neutron irradiation : | 1 Mrads (Si) | | | Device types 02 and 03 | <u>5</u> / | | | Device type 01 | ≥120 MeV-cm ² /mg | | | Single event functional interrupt (SEFI): | ≥ 100 IVIEV-CIII /IIIg | | | Device type 01 only | ≥100 MeV-cm ² /mg | | | | | - 1/ Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability. - 2/ At T_A > +25°C, the derating factor for cases F and Z is 9.3 mW/°C, 12.2 mW/°C for case 2, and 0.4 mW/°C for case X. - 3/ For device types 02 and 03, the maximum junction temperature may be increased to +175°C during burn-in and life test. - Device type 01 is irradiated at dose rate = 50 300 rads(Si)/s in accordance with MIL-STD-883, method 1019, condition A, and is guaranteed to a maximum total dose specified. The effective dose rate after extended room temperature anneal = 0.19 rad(Si)/s per MIL-STD-883, method 1019, condition A, section 3.11.2. The total dose specification for this device only applies to the specified effective dose rate, or lower, environment. - 5/ For device types 02 and 03, neutron irradiation is not tested but guaranteed up to 1 x 10¹³ neutron/cm². Contact manufacturer for requirements beyond this level. | STANDARD
MICROCIRCUIT DRAWING |
SIZE
A | | 5962-95834 | | |--|------------------|---------------------|------------|--| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
K | SHEET 3 | | #### 2. APPLICABLE DOCUMENTS 2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract. #### DEPARTMENT OF DEFENSE SPECIFICATION MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for. #### **DEPARTMENT OF DEFENSE STANDARDS** MIL-STD-883 - Test Method Standard Microcircuits. MIL-STD-1835 - Interface Standard Electronic Component Case Outlines. #### DEPARTMENT OF DEFENSE HANDBOOKS MIL-HDBK-103 - List of Standard Microcircuit Drawings. MIL-HDBK-780 - Standard Microcircuit Drawings. (Copies of these documents are available online at https://assist.daps.dla.mil/quicksearch/ or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.) 2.2 <u>Non-Government publications</u>. The following document(s) form a part of this document to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract. ## AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) ASTM F1192 - Standard Guide for the Measurement of Single Event Phenomena (SEP) Induced by Heavy Ion Irradiation of semiconductor Devices. (Copies of these documents are available online at http://www.astm.org or from ASTM International, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA, 19428-2959). 2.3 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained. ## 3. REQUIREMENTS - 3.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. The individual item requirements for device class M shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein. - 3.1.1 Microcircuit die. For the requirements of microcircuit die, see appendix A to this document. - 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein for device classes Q and V or MIL-PRF-38535, appendix A and herein for device class M. - 3.2.1 <u>Case outlines</u>. The case outlines shall be in accordance with 1.2.4 herein. - 3.2.2 Terminal connections. The terminal connections shall be as specified on figure 1. - 3.2.3 <u>Radiation exposure table</u>. For device types 01, 02, and 03, the radiation exposure circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing and acquiring activity upon request. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-95834 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
K | SHEET 4 | - 3.3 <u>Electrical performance characteristics and postirradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and postirradiation parameter limits are as specified in table IA and shall apply over the full ambient operating temperature range. - 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are defined in table IA. - 3.5 <u>Marking</u>. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device. For RHA product using this option, the RHA designator shall still be marked. Marking for device classes Q and V shall be in accordance with MIL-PRF-38535. Marking for device class M shall be in accordance with MIL-PRF-38535, appendix A. - 3.5.1 <u>Certification/compliance mark</u>. The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-PRF-38535. The compliance mark for device class M shall be a "C" as required in MIL-PRF-38535, appendix A. - 3.6 <u>Certificate of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.6.1 herein). For device class M, a certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6.2 herein). The certificate of compliance submitted to DLA Land and Maritime-VA prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and herein or for device class M, the requirements of MIL-PRF-38535, appendix A and herein. - 3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 or for device class M in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing. - 3.8 <u>Notification of change for device class M.</u> For device class M, notification to DLA Land and Maritime-VA of change of product (see 6.2 herein) involving devices acquired to this drawing is required for any change that affects this drawing. - 3.9 <u>Verification and review for device class M.</u> For device class M, DLA Land and Maritime, DLA Land and Maritime 's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer. - 3.10 <u>Microcircuit group assignment for device class M</u>. Device class M devices covered by this drawing shall be in microcircuit group number 77 (see MIL-PRF-38535, appendix A). | STANDARD | |----------------------| | MICROCIRCUIT DRAWING | | | DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 | SIZE
A | | 5962-95834 | |------------------|---------------------|------------| | | REVISION LEVEL
K | SHEET 5 | ## TABLE IA. Electrical performance characteristics. | Test | Symbol | Conditions $\underline{1}/\underline{2}/$
-55°C \leq T _A \leq +125°C
unless otherwise specified | Group A subgroups | Device
type | Lir | mits | Unit | |-----------------------------------|------------------|--|-------------------|----------------------|------|------|------| | | | | | | Min | Max | | | Output voltage high | VoH | $V_{CC} = 4.5 \text{ V}, I_{OH} = -0.4 \text{ mA},$
$V_{ID} = -200 \text{ mV}$ | 1, 2, 3 | 01 | 3.8 | | V | | | | V _{CC} = 4.5 V, I _{OH} = -0.4 mA | • | 02, 03 | 4.0 | | 1 | | | 1., | V _{CC} = 4.5 V, I _{OL} = 2 mA, | 4.0.0 | 04 | | 0.0 | ., | | Output voltage low | V _{OL} | V _{ID} = -200 mV | 1, 2, 3 | 01 | | 0.3 | V | | | | V _{CC} = 4.5 V, I _{OL} = 2 mA | | 02, 03 | | 0.3 | | | Input voltage high | VIH | | 1, 2, 3 | All | 2.0 | | V | | Input voltage low | VIL | | 1, 2, 3 | All | | 0.8 | V | | Innut ourrent 2/ | 1. | V _{CC} = 5.5 V or 0.0 V, | 1, 2, 3 | 01 | -10 | 10 | μА | | Input current 3/ | l _l | V _{IN} = 2.4 V, INPUT PINS | 1, 2, 3 | 01 | -10 | 10 | μΑ | | | | V _{CC} = 5.5 V, | | 02 | -10 | 10 | | | | | V _{IN} = 2.4 V, INPUT PINS | | | | 10 | | | | | V _{CC} = 5.5 V or 0.0 V, | | 01 | -10 | 10 | | | | | V _{IN} = 0 V, INPUT PINS | | | | | | | | | $V_{CC} = 5.5 \text{ V},$ | | 02 | -10 | 10 | | | | | V _{IN} = 0 V, INPUT PINS | | | | | | | | | V _{CC} = 5.5 V, | | 01 | -10 | 10 | | | | | ENABLE PINS ENABLE PINS | | | | | | | | | V _{CC} = 5.5 V, V _{IN} = 5.5 V | | 02 | -10 | 10 | | | | | V _{CC} = 0 V, V _{IN} = 5.5 V | | 03 | -10 | 10 | 1 | | Differential input low threshold | V _T L | V _{CM} = +1.2 V | 1, 2, 3 | 01 | -100 | | mV | | Theshold | | | | 02, 03
<u>4</u> / | -100 | | - | | Differential input high threshold | V _{TH} | V _{CM} = +1.2 V | 1, 2, 3 | 01 | | 100 | mV | | 5011010 | | | | 02, 03
<u>4</u> / | | 100 | 1 | | Input clamp voltage | VI | I _{IN} + -18 mA | 1, 2, 3 | 01 | -1.5 | | V | | | | | | 02, 03
<u>4</u> / | -1.5 | +1.5 | | | Output short circuit current | los | Enabled, V _{OUT} = 0 V | 1, 2, 3 | 01 | -15 | -100 | mA | | | | | | 02, 03
<u>4</u> / | -15 | -130 | | See footnotes at end of table. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-95834 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
K | SHEET 6 | TABLE IA. <u>Electrical performance characteristics</u> - Continued. | Test | Symbol | Conditions $\underline{1}/\underline{2}/$
-55°C \leq T _A \leq +125°C
unless otherwise specified | | Group A
subgroups | Device
type | Lir | mits | Unit | |---|------------------
--|---|----------------------|----------------------|-----|------|------| | | | | • | | | Min | Max | | | Output tri-state current 3/ | loz | Disabled, | 1 | 1, 2, 3 | All | -10 | 10 | μА | | No load supply current 3/ | Icc | Vout = 0 V or V _{CC} ENABLE, ENABLE = V _{CC} or GND, Inputs open. | | 1, 2, 3 | All | | 11 | mA | | | | ENABLE, ENAB
0.5, | ENABLE, ENABLE = 2.4 or | | 01 | | 11 | | | | | Inputs open. | M, D, P, L | 1 | | | 20 | | | No load supply current 3/
receivers disabled | Iccz | | ENABLE = GND,
ENABLE = VCC, | | All | | 11 | mA | | | | Inputs open. | M, D, P, L | 1 | 01 | | 20 | | | Functional test | FT | See 4.4.1.c | | 7, 8 | All | | | | | Differential propagation delay, high to low | tPHLD | V _{ID} = 200 mV,
Input pulse = 1.1 V to 1.3 V, | | 9, 10, 11 | All | 1.0 | 8 | ns | | | | $V_{IN} = 1.2 \text{ V } (0 \text{ V differential})$
to $V_{OUT} = \frac{1}{2} V_{CC}$ | | | | | | | | Differential propagation delay, low to high | tPLHD | V _{ID} = 200 mV,
Input pulse = 1.1 V to 1.3 V, | | 9, 10, 11 | All | 1.0 | 8 | ns | | | | • | V _{IN} = 1.2 V (0 V differential)
to V _{OUT} = ½ V _{CC} | | | | | | | Differential skew | tskD | C _L = 20 pF, V _{ID} | = 200 mV | 9, 10, 11 | All | | 3 | ns | | Channel to channel skew | tsK1 | C _L = 20 pF, <u>5</u> / | | 9, 10, 11 | 01 | | 3 | ns | | | | V _{ID} = 200 mV | | | 02, 03
<u>4</u> / | | 3 | | | Chip to chip skew | t _{SK2} | C _L = 20 pF, <u>6</u> / | | 9, 10, 11 | 01 | | 7 | ns | | | | V _{ID} = 200 mV | | | 02, 03
<u>4</u> / | | 7 | | | Disable time, low to Z | t _{PLZ} | Input pulse = 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | Input pulse = 0 V to 3.0 V, | | 01 | | 20 | ns | | | | $V_{OUT} = V_{OL} + 0.$ $R_L = 1 \text{ k}\Omega \text{ to } V_C$ | | | 02, 03
<u>4</u> / | | 20 | | See footnotes at end of table. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-95834 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
K | SHEET 7 | TABLE IA. Electrical performance characteristics - Continued. | Test | Symbol | Conditions $\underline{1}/\underline{2}/$
-55°C \leq T _A \leq +125°C
unless otherwise specified | Group A subgroups | Device
type | Lir | mits | Unit | |-------------------------|------------------|--|-------------------|----------------|-----|------|------| | | | | | | Min | Max | | | Disable time high to 7 | 4 | Input pulse = 0 V to 3.0 V, | 9, 10, 11 | 01 | | 20 | ns | | Disable time, high to Z | tpHZ | V _{IN} = 1.5 V, | 9, 10, 11 | , 11 | | | 115 | | | | $V_{OUT} = V_{OH} - 0.5 V$, | | 02, 03 | | 20 | | | | | $R_L = 1 \text{ k}\Omega \text{ to GND}$ | | <u>4</u> / | | 20 | | | | | Input pulse = 0 V to 3.0 V, | 9, 10, 11 | 01 | | 20 | no | | Enable time, Z to high | t _{PZH} | V _{IN} = 1.5 V, | 9, 10, 11 | | | | ns | | | | V _{OUT} = 50 %, | | 02, 03 | | 20 | | | | | $R_L = 1 \text{ k}\Omega \text{ to GND}$ | | <u>4</u> / | | 20 | | | | | Input pulse = 0 V to 3.0 V, | 0 10 11 | 01 | | 20 | 20 | | Enable time, Z to low | t _{PZL} | V _{IN} = 1.5 V, | 9, 10, 11 | 01 | | 20 | ns | | | | V _{OUT} = 50 %, | | 02, 03 | | 20 | | | | | $R_L = 1 \text{ k}\Omega \text{ to V}_{CC}$ | | <u>4</u> / | | 20 | | - 1/ Unless otherwise specified; for device type 01, V_{CC} = 4.5 V, 5.0 V, and 5.5 V, R_L = 100 Ω between outputs, C_L = 20 pF each output to GND; for device types 02 and 03, V_{CC} = 4.5 V and 5.5 V. - Device type 01 supplied to this drawing is tested at all levels M, D, P, L of irradiation. Device type 02 supplied to this drawing meets all levels M, D, P, L, R, F, G, H of irradiation. However, this device is only tested at the "H" level. Device type 03 supplied to this drawing meets all levels M, D, P, L, R, F of irradiation. However, this device is only tested at the "F" level. Pre and Post irradiation values are identical unless otherwise specified in Table IA. When performing post irradiation electrical measurements for any RHA level, T_A = +25°C. - 3/ Device types 02 and 03, tested at $V_{CC} = 5.5 \text{ V}$ only. - 4/ Guaranteed, not tested to the limits specified in table IA herein. - 5/ Channel to channel skew is defined as the difference between the propagation delay of one channel and that of the others on the same chip with an event on the inputs. - 6/ Chip to chip skew is defined as the difference between the minimum and maximum specified differential propagation delays. TABLE IB. SEP test limits. 1/2/ | Device type | Single event
latch-up | Temperature (T _C) | Vcc | Effective linear energy transfer (LET) | |-------------|--------------------------|-------------------------------|-------|--| | 01 | SEL | +125°C | 5.5 V | ≥ 120 MeV-cm ² /mg | | 02, 03 | | +125°C | 5.5 V | ≥ 100 MeV-cm ² /mg | | 01 | SEFI | +25°C | 5.5 V | ≥ 100 MeV-cm ² /mg | - 1/ For SEP test conditions, see 4.4.4.3 herein. - 2/ Technology characterization and model verification supplemented by in-line data may be used in lieu of end of line testing. Test plan must be approved by the technical review board and qualifying activity. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-95834 | |----------------------------------|------------------|----------------|------------| | DLA LAND AND MARITIME | | REVISION LEVEL | SHEET | | COLUMBUS, OHIO 43218-3990 | | K | 8 | | Device types | 0 | 1 | 02, 03 | | |-----------------|-----------------|-----------------|----------|--| | Case outlines | F and Z | 2 | X | | | Terminal number | Terminal symbol | | | | | 1 | INPUT A- | NC | INPUT A- | | | 2 | INPUT A+ | INPUT A- | INPUT A+ | | | 3 | OUTPUT A | INPUT A+ | OUTPUT A | | | 4 | ENABLE | OUTPUT A | ENABLE | | | 5 | OUTPUT B | ENABLE | OUTPUT B | | | 6 | INPUT B+ | NC | INPUT B+ | | | 7 | INPUT B- | OUTPUT B | INPUT B- | | | 8 | GND | INPUT B+ | GND | | | 9 | INPUT C- | INPUT B- | INPUT C- | | | 10 | INPUT C+ | GND | INPUT C+ | | | 11 | OUTPUT C | NC | OUTPUT C | | | 12 | ENABLE | INPUT C- | ENABLE | | | 13 | OUTPUT D | INPUT C+ | OUTPUT D | | | 14 | INPUT D+ | OUTPUT C | INPUT D+ | | | 15 | INPUT D- | ENABLE | INPUT D- | | | 16 | Vcc | NC | Vcc | | | 17 | | OUTPUT D | | | | 18 | | INPUT D+ | | | | 19 | | INPUT D- | | | | 20 | | V _{CC} | | | NC = No connection FIGURE 1. Terminal connections. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-95834 | |----------------------------------|------------------|----------------|------------| | DLA LAND AND MARITIME | | REVISION LEVEL | SHEET | | COLUMBUS, OHIO 43218-3990 | | K | 9 | #### 4. VERIFICATION - 4.1 <u>Sampling and inspection</u>. For device classes Q and V, sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. For device class M, sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A. - 4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection. For device class M, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. - 4.2.1 Additional criteria for device class M. - a. Burn-in test, method 1015 of MIL-STD-883. - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883. - (2) $T_A = +125^{\circ}C$, minimum. - b. Interim and final electrical test parameters shall be as specified in table II herein. - 4.2.2 Additional criteria for device classes Q and V. - a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883. - b. Interim and final electrical test parameters shall be as specified in table II herein. - c. Additional screening for device class V beyond the requirements of device class Q shall be as specified in MIL-PRF-38535, appendix B. - 4.3 <u>Qualification inspection for device classes Q and V.</u> Qualification inspection for device classes Q and V shall be in accordance with MIL-PRF-38535. Inspections to be performed shall be those specified in MIL-PRF-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4). - 4.4 <u>Conformance inspection</u>. Technology conformance inspection for classes Q and V shall be in accordance with MIL-PRF-38535 including groups A, B, C, D, and E inspections and as specified herein. Quality conformance inspection for device class M shall be in accordance with MIL-PRF-38535, appendix A and as specified herein. Inspections to be performed for device class M shall be
those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4). - 4.4.1 Group A inspection. - a. Tests shall be as specified in table II herein. - b. Subgroups 4, 5, and 6 in table IA, method 5005 of MIL-STD-883 shall be omitted. - c. For device class M, subgroups 7 and 8 tests shall be sufficient to verify the truth table. For device classes Q and V, subgroups 7 and 8 shall include verifying the functionality of the device. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-95834 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
K | SHEET 10 | TABLE II. Electrical test requirements. | Test requirements | Subgroups
(in accordance with
MIL-STD-883,
method 5005, table I) | Subgr
(in accord
MIL-PRF-38 | ance with | |---|---|--|--| | | Device
class M | Device
class Q | Device
class V | | Interim electrical parameters (see 4.2) | | | | | Final electrical parameters (see 4.2) | 1, 2, 3, 7, <u>1</u> /
8, 9, 10, 11 | 1, 2, 3, 7, <u>1</u> /
8, 9, 10, 11 | 1, 2, 3, 7, <u>1</u> /
8, 9, 10, 11 | | Group A test requirements (see 4.4) | 1, 2, 3, 7, 8,
9, 10, 11 | 1, 2, 3, 7, 8,
9, 10, 11 | 1, 2, 3, 7, 8,
9, 10, 11 | | Group C end-point electrical parameters (see 4.4) | 1, 2, 3 | 1, 2, 3 | 1, 2, 3 | | Group D end-point electrical parameters (see 4.4) | 1, 2, 3 | 1, 2, 3 | 1, 2, 3 | | Group E end-point electrical parameters (see 4.4) | 1, 7, 9 | 1, 7, 9 | 1, 7, 9 | ^{1/} PDA applies to subgroup 1. - 4.4.2 Group C inspection. The group C inspection end-point electrical parameters shall be as specified in table II herein. - 4.4.2.1 Additional criteria for device class M. Steady-state life test conditions, method 1005 of MIL-STD-883: - a. Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883. - b. $T_A = +125$ °C, minimum. - c. Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883. - 4.4.2.2 Additional criteria for device classes Q and V. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883. - 4.4.3 Group D inspection. The group D inspection end-point electrical parameters shall be as specified in table II herein. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-95834 | |----------------------------------|------------------|----------------|------------| | DLA LAND AND MARITIME | | REVISION LEVEL | SHEET | | COLUMBUS, OHIO 43218-3990 | | K | 11 | - 4.4.4 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein). - a. End-point electrical parameters shall be as specified in table II herein. - b. For device classes Q and V, the devices or test vehicle shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535 for the RHA level being tested. For device class M, the devices shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535, appendix A for the RHA level being tested. All device classes must meet the postirradiation end-point electrical parameter limits as defined in table I at TA = +25°C, after exposure, to the subgroups specified in table II herein. - 4.4.4.1 <u>Total dose irradiation testing</u>. Total dose irradiation testing shall be performed in accordance with MIL-STD-883 method 1019, condition A and as specified herein. - 4.4.4.1.1 Accelerated annealing test. Accelerated annealing tests shall be performed on all devices requiring a RHA level greater than 5k rads(Si). The post-anneal end-point electrical parameter limits shall be as specified in table I herein and shall be the pre-irradiation end-point electrical parameter limit at 25° C $\pm 5^{\circ}$ C. Testing shall be performed at initial qualification and after any design or process changes which may affect the RHA response of the device. - 4.4.4.2 <u>Neutron testing</u>. Neutron testing is not required for this technology. Devices are guaranteed to meet the post-irradiation end point electrical parameter limits as defined in table IA after exposure 1 x 10¹³ neutron/cm² (minimum). - 4.4.4.3 <u>Single event phenomena (SEP)</u>. When specified in the purchase order or contract, SEP testing shall be performed on class V devices. SEP testing shall be performed on the Standard Evaluation Circuit (SEC) or alternate SEP test vehicle as approved by the qualifying activity at initial qualification and after any design or process changes which may affect the upset or latchup characteristics. Test four devices with zero failures. ASTM F1192 may be used as a guideline when performing SEP testing. The recommended test conditions for SEP are as follows: - a. The ion beam angle of incidence shall be between normal to the die surface and 60° to the normal, inclusive (i.e. $0^{\circ} \le \text{angle} \le 60^{\circ}$). No shadowing of the ion beam due to fixturing or package related affects is allowed. - b. The fluence shall be ≥ 100 errors or $\geq 10^7$ ions/cm². - c. The flux shall be between 10² and 10⁵ ions/cm²/s. The cross-section shall be verified to be flux independent by measuring the cross-section at two flux rates which differ by at least an order of magnitude. - d. The particle range shall be \geq 20 micron in silicon. - e. The test temperature shall be the maximum rated operating temperature +125°C. - f. Bias conditions shall be $V_{CC} = 5.5 \text{ V}$ for the latchup and functional interrupt measurements. - g. For SEL and SEFI test limits, see Table IB herein. - 5. PACKAGING - 5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-95834 | |----------------------------------|------------------|----------------|------------| | DLA LAND AND MARITIME | | REVISION LEVEL | SHEET | | COLUMBUS, OHIO 43218-3990 | | K | 12 | #### 6. NOTES - 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes. - 6.1.1 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor prepared specification or drawing. - 6.1.2 Substitutability. Device class Q devices will replace device class M devices. - 6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal. - 6.3 <u>Record of users</u>. Military and industrial users should inform DLA Land and Maritime when a system application requires configuration control and which SMD's are applicable to that system. DLA Land and Maritime will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DLA Land and Maritime -VA, telephone (614) 692-0547. - 6.4 <u>Comments</u>. Comments on this drawing should be directed to DLA Land and Maritime -VA, Columbus, Ohio 43218-3990, or telephone (614) 692-0540. - 6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331. - 6.6 Sources of supply. - 6.6.1 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DLA Land and Maritime -VA and have agreed to this drawing. - 6.6.2 <u>Approved sources of supply for device class M.</u> Approved sources of supply for class M are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DLA Land and Maritime -VA. - 6.7 <u>Additional information</u>. When applicable, a copy of the following additional data shall be maintained and available from the device manufacturer: - a. RHA upset levels. - b. Test conditions (SEL). - c. Occurrence of latchup (SEL). - d. Occurence of single event functional interrupt (SEFI). | STANDARD | |-----------------------| | MICROCIRCUIT DRAWING | | DLA LAND AND MARITIME | COLUMBUS, OHIO 43218-3990 SIZE **5962-95834**REVISION LEVEL SHEET 13 #### A.1 SCOPE A.1.1 Scope. This appendix establishes minimum requirements for microcircuit die to be supplied under the Qualified Manufacturers List (QML) Program. QML microcircuit die meeting the requirements of MIL-PRF-38535 and the manufacturers approved QM plan for use in
monolithic microcircuits, multi-chip modules (MCMs), hybrids, electronic modules, or devices using chip and wire designs in accordance with MIL-PRF-38534 are specified herein. Two product assurance classes consisting of military high reliability (device class Q) and space application (device class V) are reflected in the Part or Identification Number (PIN). When available, a choice of Radiation Hardiness Assurance (RHA) levels are reflected in the PIN. A.1.2 PIN. The PIN is as shown in the following example: A.1.2.1 RHA designator. Device classes Q and V RHA identified die meet the MIL-PRF-38535 specified RHA levels. A dash (-) indicates a non-RHA die. A.1.2.2 Device type(s). The device type(s) identify the circuit function as follows: | Device type | Generic number | <u>Circuit function</u> | |-------------|----------------|---| | 02 | UT54LVDS032 | Radiation hardened, LVDS quad CMOS differential line receiver | | 03 | UT54LVDSC032 | Radiation hardened, LVDS quad CMOS differential line receiver with cold spare on LVDS bus | A.1.2.3 Device class designator. **Device class Device requirements documentation** Q or V Certification and qualification to the die requirements of MIL-PRF-38535 | STANDARD | | | | |-----------------------------|--|--|--| | MICROCIRCUIT DRAWING | | | | | DLA LAND AND MARITIME | | | | | WICKOCIKCUIT DRAWING | |---------------------------| | DLA LAND AND MARITIME | | COLUMBUS, OHIO 43218-3990 | | SIZE
A | | 5962-95834 | |------------------|---------------------|-------------| | | REVISION LEVEL
K | SHEET
14 | A.1.2.4 <u>Die details</u>. The die details designation is a unique letter which designates the die's physical dimensions, bonding pad location(s) and related electrical function(s), interface materials, and other assembly related information, for each product and variant supplied to this appendix. A.1.2.4.1 Die physical dimensions. <u>Die type</u> <u>Figure number</u> 02, 03 A-1 A.1.2.4.2 Die bonding pad locations and electrical functions. <u>Die type</u> <u>Figure number</u> 02, 03 A-1 A.1.2.4.3 Interface materials. <u>Die type</u> <u>Figure number</u> 02, 03 A-1 A.1.2.4.4 Assembly related information. <u>Die type</u> <u>Figure number</u> 02, 03 A-1 A.1.3 Absolute maximum ratings. See paragraph 1.3 herein for details. A.1.4 Recommended operating conditions. See paragraph 1.4 herein for details. | STANDARD | |----------------------| | MICROCIRCUIT DRAWING | DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 | SIZE
A | | 5962-95834 | |------------------|---------------------|-------------| | | REVISION LEVEL
K | SHEET
15 | #### A.2 APPLICABLE DOCUMENTS. A.2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract. #### DEPARTMENT OF DEFENSE SPECIFICATION MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for. #### DEPARTMENT OF DEFENSE STANDARD MIL-STD-883 - Test Method Standard Microcircuits. #### DEPARTMENT OF DEFENSE HANDBOOKS MIL-HDBK-103 - List of Standard Microcircuit Drawings. MIL-HDBK-780 - Standard Microcircuit Drawings. (Copies of these documents are available online at https://assist.daps.dla.mil/quicksearch/ or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.) A.2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained. #### A.3 REQUIREMENTS - A.3.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. - A.3.2 <u>Design, construction and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein and the manufacturer's QM plan for device classes Q and V. - A.3.2.1 <u>Die physical dimensions</u>. The die physical dimensions shall be as specified in A.1.2.4.1 and on figure A-1. - A.3.2.2 <u>Die bonding pad locations and electrical functions</u>. The die bonding pad locations and electrical functions shall be as specified in A.1.2.4.2 and on figure A-1. - A.3.2.3 Interface materials. The interface materials for the die shall be as specified in A.1.2.4.3 and on figure A-1. - A.3.2.4 Assembly related information. The assembly related information shall be as specified in A.1.2.4.4 and on figure A-1. - A.3.2.5 Radiation exposure circuit. The radiation exposure circuit shall be as defined in paragraph 3.2.3 herein. - A.3.3 <u>Electrical performance characteristics and post-irradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and post-irradiation parameter limits are as specified in table I of the body of this document. - A.3.4 <u>Electrical test requirements</u>. The wafer probe test requirements shall include functional and parametric testing sufficient to make the packaged die capable of meeting the electrical performance requirements in table I. - A.3.5 <u>Marking</u>. As a minimum, each unique lot of die, loaded in single or multiple stack of carriers, for shipment to a customer, shall be identified with the wafer lot number, the certification mark, the manufacturer's identification and the PIN listed in A.1.2 herein. The certification mark shall be a "QML" or "Q" as required by MIL-PRF-38535. | STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 | SIZE
A | | 5962-95834 | |---|------------------|---------------------|-------------| | | | REVISION LEVEL
K | SHEET
16 | - A.3.6 <u>Certification of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see A.6.4 herein). The certificate of compliance submitted to DLA Land and Maritime-VA prior to listing as an approved source of supply for this appendix shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and the requirements herein. - A.3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 shall be provided with each lot of microcircuit die delivered to this drawing. #### A.4 VERIFICATION - A.4.1 <u>Sampling and inspection</u>. For device classes Q and V, die sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modifications in the QM plan shall not affect the form, fit, or function as described herein. - A.4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and as defined in the manufacturer's QM plan. As a minimum, it shall consist of: - a. Wafer lot acceptance for class V product using the criteria defined in MIL-STD-883, method 5007. - b. 100% wafer probe (see paragraph A.3.4 herein). - c. 100% internal visual inspection to the applicable class Q or V criteria defined in MIL-STD-883, method 2010 or the alternate procedures allowed in MIL-STD-883, method 5004. ## A.4.3 Conformance inspection. A.4.3.1 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be identified as radiation assured (see A.3.5 herein). RHA levels for device classes Q and V shall be as specified in MIL-PRF-38535. End point electrical testing of packaged die shall be as specified in table II herein. Group E tests and conditions are as specified in paragraphs 4.4.4, 4.4.4.1, 4.4.4.1, and 4.4.4.2 herein. ## A.5 DIE CARRIER A.5.1 <u>Die carrier requirements</u>. The requirements for the die carrier shall be accordance with the manufacturer's QM plan or as specified in the purchase order by the acquiring activity. The die carrier shall provide adequate physical, mechanical and electrostatic protection. #### A.6 NOTES - A.6.1 <u>Intended use</u>. Microcircuit die conforming to this drawing are intended for use in microcircuits built in accordance with MIL-PRF-38535 or MIL-PRF-38534 for government microcircuit applications (original equipment), design applications, and logistics purposes. - A.6.2 <u>Comments</u>. Comments on this appendix should be directed to DLA Land and Maritime -VA, Columbus, Ohio, 43218-3990 or telephone (614)-692-0540. - A.6.3 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331. - A.6.4 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed within QML-38535 have submitted a certificate of compliance (see A.3.6 herein) to DLA Land and Maritime VA and have agreed to this drawing. | STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 | SIZE
A | | 5962-95834 | |---|------------------|---------------------|-------------| | | | REVISION LEVEL
K | SHEET
17 | # APPENDIX A APPENDIX A FORMS A PART OF SMD 5962-95834 -0.074-0.016 TYP. WERSTON A ←-0.007 TYP. 021 TYP. 0.0035 0.0033 TYP. FIGURE A-1. Die bonding pad
locations and electrical functions. SIZE **STANDARD** 5962-95834 Α **MICROCIRCUIT DRAWING** DLA LAND AND MARITIME **REVISION LEVEL** SHEET COLUMBUS, OHIO 43218-3990 Κ 18 Die bonding pad locations and electrical functions Die physical dimensions. Die Size: $85.0 \times 74.0 \text{ mils}$. Die Thickness: $17.5 \pm 1 \text{ mils}$. Interface materials. Top Metallization: Si Al Cu 6.2kÅ - 7.6kÅ Backside Metallization: None. Glassivation Type: Oxide/Nitride Thickness: 9kÅ - 11kÅ Substrate: Epitaxial Layer on Single crystal silicon. Assembly related information. Substrate Potential: Tied to VSS. Special assembly instructions: Contact manufacturer for bonding information on die pads 14-15, 17-18, 21-23, and 25-26. FIGURE A-1. Die bonding pad locations and electrical functions - Continued. | STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 | SIZE
A | | 5962-95834 | |---|------------------|---------------------|-------------| | | | REVISION LEVEL
K | SHEET
19 | | | X | Υ | | |---------|--------|--------|-------------| | Die pad | center | center | Signal name | | 1 | 21.3 | 31.3 | VSS | | 2 | 17.7 | 31.3 | VSS | | 3 | 14.2 | 31.3 | Rout4 | | 4 | 10.6 | 31.3 | Rin4+ | | 5 | 7.1 | 31.3 | Rin4- | | 6 | 3.5 | 31.3 | VDD | | 7 | 0 | 31.3 | VDD | | 8 | -3.6 | 31.3 | VSS | | 9 | -7.1 | 31.3 | Rin1- | | 10 | -10.6 | 31.3 | Rin1+ | | 11 | -14.2 | 31.3 | Rout1 | | 12 | -17.7 | 31.3 | EN | | 13 | -21.3 | 31.3 | VSS | | 14 | -36.6 | 21.3 | Note 1 | | 15 | -36.6 | 17.7 | Note 1 | | 16 | -36.6 | 14.2 | N/C | | 17 | -36.6 | 10.6 | Note 1 | | 18 | -36.6 | 7.1 | Note 1 | | 19 | -36.6 | 3.5 | N/C | | 20 | -36.6 | 0 | N/C | | 21 | -36.6 | -3.5 | Note 1 | | 22 | -36.6 | -7.1 | Note 1 | | 23 | -36.6 | -10.6 | Note 1 | | 24 | -36.6 | -14.2 | N/C | | 25 | -36.6 | -17.7 | Note 1 | | 26 | -36.6 | -21.3 | Note 1 | | Die pad | X
center | Y
center | Signal name | |---------|-------------|-------------|-------------| | 27 | -21.3 | -31.3 | VSS | | 28 | -17.7 | -31.3 | VSS | | 29 | -14.2 | -31.3 | Rout2 | | 30 | -10.6 | -31.3 | Rin2+ | | 31 | -7.1 | -31.3 | Rin2- | | 32 | -3.5 | -31.3 | VSS | | 33 | 0 | -31.3 | VDD | | 34 | 3.5 | -31.3 | VDD | | 35 | 7.1 | -31.3 | Rin3- | | 36 | 10.6 | -31.3 | Rint3+ | | 37 | 14.2 | -31.3 | Rout3 | | 38 | 17.7 | -31.3 | ENB | | 39 | 21.3 | -31.3 | VSS | | 40 | 36.6 | -21.3 | N/C | | 41 | 36.6 | -17.7 | N/C | | 42 | 36.6 | -14.2 | N/C | | 43 | 36.6 | -10.6 | N/C | | 44 | 36.6 | -7.1 | N/C | | 45 | 36.6 | -3.5 | N/C | | 46 | 36.6 | 0 | N/C | | 47 | 36.6 | 3.5 | N/C | | 48 | 36.6 | 7.1 | N/C | | 49 | 36.6 | 10.6 | N/C | | 50 | 36.6 | 14.2 | N/C | | 51 | 36.6 | 17.7 | N/C | | 52 | 36.6 | 21.3 | N/C | | | | · | | ## NOTES: - 1. Contact manufacturer for bonding information on these pads. - Units are in mils. Origin (0, 0) = die center. FIGURE A-1. <u>Die bonding pad locations and electrical functions</u> - Continued. | STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 | SIZE
A | | 5962-95834 | |---|------------------|---------------------|------------| | | | REVISION LEVEL
K | SHEET 20 | ## STANDARD MICROCIRCUIT DRAWING BULLETIN DATE: 10-10-05 Approved sources of supply for SMD 5962-95834 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DLA Land and Maritime -VA. This information bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535. DLA Land and Maritime maintains an online database of all current sources of supply at http://www.dscc.dla.mil/Programs/Smcr/. | Standard
microcircuit drawing
PIN <u>1</u> / | Vendor
CAGE
number | Vendor
Similar
PIN <u>2</u> / | |--|--------------------------|-------------------------------------| | 5962-9583401Q2A | 27014 | DS90C032E-QML | | 5962-9583401QFA | <u>3</u> / | DS90C032W-QML | | 5962-9583401VFA | 27014 | DS90C032W-QMLV | | 5962L9583401VFA | 27014 | DS90C032WLQMLV | | 5962-9583401QZA | <u>3</u> / | DS90C032WG-QML | | 5962-9583401VZA | <u>3</u> / | DS90C032WG-QMLV | | 5962L9583401VZA | 27014 | DS90C032WGLQMLV | | 5962H9583402QXA | 65342 | UT54LVDS032UCA | | 5962H9583402QXC | 65342 | UT54LVDS032UCC | | 5962H9583402VXA | 65342 | UT54LVDS032UCA | | 5962H9583402VXC | 65342 | UT54LVDS032UCC | | 5962F9583403QXA | 65342 | UT54LVDSC032UCA | | 5962F9583403QXC | 65342 | UT54LVDSC032UCC | | 5962F9583403VXA | 65342 | UT54LVDSC032UCA | | 5962F9583403VXC | 65342 | UT54LVDSC032UCC | See footnotes at end of table. ## STANDARD MICROCIRCUIT DRAWING BULLETIN - Continued DATE: 10-10-05 | Standard
microcircuit drawing
PIN <u>1</u> / | Vendor
CAGE
number | Vendor
Similar
PIN <u>2</u> / | |--|--------------------------|-------------------------------------| | 5962H9583402V9A | 65342 | UT54LVDS032-VDIE | | 5962H9583402Q9A | 65342 | UT54LVDS032-QDIE | | 5962F9583403V9A | 65342 | UT54LVDS032-VDIE | | 5962F9583403Q9A | 65342 | UT54LVDS032-QDIE | - 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability. - 2/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing. | Vendor CAGE number | Vendor name and address | |--------------------|--| | 27014 | National Semiconductor
2900 Semiconductor Dr.
P.O. Box 58090
Santa Clara, CA 95052-8090 | | 65342 | Aeroflex, Colorado Springs, Inc.
4350 Centennial Boulevard
Colorado Springs, Colorado 80907-3486 | The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.